12-я летняя школа «Комбинаторика и алгоритмы»

В этом листке есть задачи (возможно переформулированные), рассказанные на лекции. Они помечены кружком и стоят 1 балл. Остальные задачи стоят 2 балла (пункт не является отдельной задачей). Для получения зачёта по этому листку достаточно набрать 20 баллов.

Остатки по модулю m

Множество $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$ называется *системой вычетов* по модулю m. На ней определены операции сложения и умножения.

Будем называть элемент $a \in \mathbb{Z}_m$ обратимым, если существует обратный к a элемент, то есть такое b, что $a \cdot b \equiv 1 \pmod{m}$. Обратный к a элемент обозначается как a^{-1} . Множество обратимых элементов \mathbb{Z}_m называется npusedenhoù системой вычетов и обозначается \mathbb{Z}_m^* .

- **1°.** Приведите пример, когда произведение двух ненулевых классов вычетов по модулю m является нулевым классом. Такие классы называют $\partial e numensmu$ нуля в \mathbb{Z}_m .
- 2°. Докажите, что ненулевой класс не является делителем нуля если и только если он обратим.
- **3.** а) Докажите, что целое m > 1 простое если и только если для любого ненулевого класса в \mathbb{Z}_m найдётся обратный к нему класс из \mathbb{Z}_m . **6**) Докажите, что обратный класс единствен.
- **4.** Решите уравнения **a)** 8x = 3 в \mathbb{Z}_{13} ; **б)** 7x = 2 в \mathbb{Z}_{11} ; **в)** $x^2 = 1$ в \mathbb{Z}_6 , \mathbb{Z}_7 , \mathbb{Z}_8 .
- **5°.** Изобразим элементы \mathbb{Z}_m точками, зафиксируем *обратимый* (по умножению) элемент $\alpha \in \mathbb{Z}_m$ и из каждой точки $\omega \in \mathbb{Z}_m$ проведём стрелку в точку $\alpha \cdot \omega$. Докажите, что на этой картинке
- а) движение по стрелкам распадается на непересекающиеся циклы;
- б) каждый цикл, содержащий хоть один обратимый класс, весь состоит из обратимых классов;
- в) циклы, состоящие из обратимых классов, имеют одинаковую длину.
- **6°.** (Теорема Эйлера) Пусть $m \in \mathbb{N}$, $\varphi(m)$ количество натуральных чисел, не превосходящих m и взаимно простых с m. Докажите, что $a^{\varphi(m)} \equiv 1 \pmod{m}$, если $a \in \mathbb{Z}$ и (a, m) = 1.
- 7. Найдётся ли **a)** 3^k , оканчивающееся на 0001; **б)** $2^k 1$, делящееся на данное нечётное x?

Первообразные корни

В этой части листка p — нечётное простое число.

Назовём *показателем* $\operatorname{ord}(x)$ элемента $x \in \mathbb{Z}_m^*$ такое минимальное $k \geqslant 1$, что $x^k = 1$.

- 8°. Докажите, что для каждого $x \in \mathbb{Z}_m^*$ показатель существует.
- **9.** Найдите показатель **a)** $1 \in \mathbb{Z}_m$; **б)** $-1 \in \mathbb{Z}_m$ **в)** всех элементов \mathbb{Z}_m^* при m = 4, 5, 6, 7.
- **10.** Пусть $\operatorname{ord}(g) = k, g \in \mathbb{Z}_m$. Докажите, что
- а) $1,g,g^2,\dots,g^{k-1}\in \mathbb{Z}_m$ попарно различные числа;
- **6)** если $k \mid l l'$, то $g^l = g^{l'}$;
- **B)** $g^s = 1 \Leftrightarrow k \mid s;$
- \mathbf{r}) $\varphi(m) \vdots k$.
- 11. Докажите, что ord $(g^l) = \frac{\operatorname{ord}(g)}{(l, \operatorname{ord}(g))}$.

Число g называется nepвooбразным корнем по модулю <math>m, если $\operatorname{ord}(g) = \varphi(m)$.

12°. Найдите все первообразные корни для $\mathbb{Z}_m, \, m \leqslant 7$.

ТЕОРЕМА 1. Первообразный корень по модулю п существует тогда и только тогда, когда $n \in \{2, 4, p^{\alpha}, 2p^{\alpha}\}$, где p — нечётное простое, α — положительное целое.

- 13. Найдите какой-нибудь первообразный корень по модулю а) 13; б) 17; в) 19.
- 14. Найдите все первообразные корни по модулю а) 13; б) 17.
- **15.** Решите сравнения: **a)** $x^8 \equiv 5 \pmod{17}$; **b)** $x^4 \equiv 4 \pmod{17}$; **b)** $x^6 \equiv 11 \pmod{19}$.

Тест Ферма

Пусть $B_n = \{a \in \mathbb{Z}_n \mid (a, n) = 1, a^{n-1} \equiv 1 \pmod{n} \}.$

16°. Либо $B_n=\mathbb{Z}_n^*$, либо $|B_n|\leqslant \frac{1}{2}|\mathbb{Z}_n^*|$.

Числом Кармайкла называется такое число n > 1, что $B_n = \mathbb{Z}_n^*$.

17. Пусть n — число, свободное от квадратов и для любого простого делителя $p \mid n$ верно, что n-1 делится на p-1. Тогда n — число Кармайкла.

Тесты на простоту

12-я летняя школа «Комбинаторика и алгоритмы»

Для зачёта по этому листку достаточно набрать 15 баллов. Задачи с кружком были на лекции и стоят 1 балла, без кружка -2 баллов. Зачёт по курсу ставится, если имеется зачёт по обоим листкам.

Китайская теорема об остатках

1. Укажите все целые числа, которые удовлетворяют системе

a)
$$\begin{cases} x \equiv 3 \pmod{5}; \\ x \equiv 7 \pmod{17}. \end{cases}$$
 6) $\begin{cases} x \equiv 2 \pmod{13}; \\ x \equiv 4 \pmod{19}. \end{cases}$

Числа Кармайкла

- **2**°. Пусть n число, свободное от квадратов и для любого простого делителя $p \mid n$ верно, что n-1 делится на p-1. Тогда n число Кармайкла.
- **3**°. Пусть $n = p^k \cdot d$, где (d, p) = 1, p простое и $k \geqslant 2$. **a)** Найдётся число a с условием: $a \equiv 1 + p \pmod{p^k}$, $a \equiv 1 \pmod{d}$. **б)** n не может быть числом Кармайкла.
- 4° . Пусть n число Кармайкла. Тогда
- **a)** n свободно от квадратов (т.е. не делится на p^2 для простого p).
- **б)** если n делится на простое число p, то n-1 делится на p-1.
- **5.** n является числом Кармайкла тогда и только тогда, когда для любого $a \in \mathbb{Z}$ верно, что $a^n \equiv a \pmod{n}$.
- 6. Число Кармайкла является нечётным.
- 7. Пусть для натурального числа k числа 6k+1, 12k+1, 18k+1 являются простыми. Тогда число $(6k+1)\cdot(12k+1)\cdot(18k+1)$ является числом Кармайкла.

Квадратичные вычеты

Определение 1. Пусть p — простое число. Будем говорить, что a является $\kappa вадратичным вычетом по модулю <math>p$, если (a,p)=1 и найдётся такой $x\in\mathbb{Z}_p$, что $a=x^2$, и $\kappa вадратичным невычетом, если <math>(a,p)=1$ и такого $x\in\mathbb{Z}_p$, что $x^2=a$ не существует.

Определение 2. Для простого нечётного p назовём *символом Лежандра* следующее выражение:

$$\binom{a}{p} = egin{cases} 1, & \text{если } a - \text{квадратичный вычет по модулю } p; \\ -1, & \text{если } a - \text{квадратичный невычет по модулю } p; \\ 0, & \text{если } (a,p) \neq 1. \end{cases}$$

Читается: символ a по p.

- **8°. а)** Докажите, что если a квадратичный вычет по модулю p, то у уравнения $x^2 = a$ в \mathbb{Z}_p есть ровно два корня.
- **б)** Докажите, что есть ровно $\frac{p-1}{2}$ квадратичных вычетов и $\frac{p-1}{2}$ квадратичных невычетов по модулю p.
- в) Докажите, что $\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}}$.
- **9.** При каких простых p число -1 является квадратичным вычетом?
- 10. Укажите квадратичные вычеты по модулю 17; 23.

Тест Миллера-Рабина

Пусть $n-1=2^s\cdot k$ для некоторой степени s и нечётного числа k. Рассмотрим множество

$$B_{MR}(n) = \{ a \in \mathbb{Z}_n^* \mid a^k = 1 \text{ или } a^{k2^i} = -1 \text{ для некоторого } 0 \leqslant i < s \}.$$

- 11° . ($Tecm\ Muллера$ -Paбuнa) Для нечётного n
- а) $B_{MR}(n) \subset B_n$ (определение B_n смотрите в Листке 1);
- **б)** Если $B_{MR}(n) = \mathbb{Z}_n^*$, то n простое.
- ТЕОРЕМА 1. (Рабин) Eсли n>9 нечётное составное число, то $|B_{MR}(n)|\leqslant \frac{1}{4}|\mathbb{Z}_n^*|$.
- **12.** Какие числа проходят проверку на простоту в тесте Миллера-Рабина для n = 8, 9, 10?
- **13.** Покажите, что если уравнение $b^k \equiv c \pmod n$ имеет хотя бы одно решение b по модулю n для данного c, то оно имеет столько же решений, сколько уравнение $b^k \equiv 1 \pmod n$.

Тест Люка-Лемера.

Числом Мерсенна M_k называется простое число вида $2^k - 1$.

14. а) Какие из чисел Мерсенна являются простыми при $1 \le k \le 10$? б) В числе Мерсенна $p = 2^k - 1$ число k является простым.

ТЕОРЕМА 2. (Лемер, 1930) Пусть p-nростое нечётное. Число Мерсенна $M_p=2^p-1$ простое тогда и только тогда, когда оно делит нацело (p-2)-й член последовательности S_k , задаваемой рекуррентно:

$$S_k = \begin{cases} 4, & ecnu \ k = 0, \\ S_{k-1}^2 - 2 & ecnu \ k > 0. \end{cases}$$

15. Проверьте теорему Лемера для p = 3, 5.